电池修复仪主要是针对铅酸蓄电池进行修复的,对于蓄电池的非物理性损坏比如蓄电池化学反应中造成的硫化、盐化、极板老化、软化、失水、热失控、极板活性物质脱落等现象具有较好的 修复效果,通过等离子共振,将硫化铅结晶体转化为自由移动的游离子参加化学反应,从而达到修复的目的。
操作说明
① 将输出线及电源线与仪器连接好,并确认各插座无松动,打开电源开关,仪器液晶屏点亮。
② 根据待处理蓄电池电压,设定仪器电压。
③ 根据电池容量及状态,参照维修流程要求,设定仪器工作模式及电流。
④ 根据修复要求,设定仪器程序时间。
⑤ 将输出线和电池连接,打开开关仪器开始工作。
⑥ 一个工作过程结束后,仪器蜂鸣器提示,将输出线和蓄电池断开,关掉仪器电源开关。
修复范围
1、电池的"失水"电池,"失水"原因及判断
(1)电池的"失水"电池,"失水"原因 动力型VRLA铅酸蓄电池的失水是电池早期失效常见,普遍的故障,也是引发其它早期失效的根源。所以一定要控制好和解决好电池的失水问题。
铅酸蓄电池的电解液是硫酸的水溶液,在铅酸蓄电池中电解液是参加反应的组分,因此电池的容量对电池内的电解液有直接的依赖关系。通常动力型VRLA铅酸蓄电池的失水是指电解液失去水份。引起水份流失主要有以下几方面:水份电解生成的氢气或氧气离开蓄电池;板栅被腐蚀使铅(Pb)转化成二氧化铅(PbO2)过程中,氧的被吸收使含水组份失去了氧;蒸发失掉水;水蒸气也可以透过电池的壳壁直接失掉;电池内的水蒸气随氢气和氧气益出蓄电池等原因。 铅酸蓄电池当前主要是为电动车,助动车,电动工具配套使用。通常为了解决电池的备用时间的问题,要满足快速充电,缩短充电时间的需要,尽量把充电时间控制在6-8小时或更短的时间,只能把充电电压设置的较高;设置的这个较高充电电压大大超过铅酸蓄电池析气的电压(即在单体电池内水的分解电压是1.23V)。在单体电池内正,负极板析出的氧气和氢气除部分气体在氧循环过程中氧在负极被氧还原外,其余气体则通过安全排气阀排出电池。在气体排出的过程中又会带出单体电池内部的水蒸气,这就进一步加速了水的流失。充电电流越大,电池内部的温度会越高,水的电解越加剧,则排出的氢气,氧气会越多,水蒸气被同时带出的越多,电池的失水越快,越严重的恶性后果。 正电极,负电极的自放电也会引起铅酸蓄电池的失水,在VRLA铅酸蓄电池上自放电引起铅酸蓄电池的失水其速率主要取决负电极自放电析氢速率。不同的电池生产企业,其电池极板和板栅的原材料成分不完全相同及技术工艺水平上的差异,电池的自放电引起的失水状况也会有差异。 正电极板栅和导电部件的铅(Pb)转化成二氧化铅(PbO2)使正电极腐蚀,当阳极电流直接使腐蚀发生时其反应是Pb+2H2O→PbO2+4H++4e-,生成的氢离子(H+)在负极上还原成氢(H2)而益处。VRLA铅酸蓄电池益出氧气和氢气也就是失水。
(2)电池的失水判断
A 电池充放电时间严重缩短,测量电池电压还算正常,严重时出现"一充电就满,一放电就光"的没电现象,失水是这种现象的主要原因之一。
B电池的电解液面观查。如果电池的电解液面低于电解液液面下限以下电池就处于失水状态,低的越多,失水越严重。
C电池的开盖检查。打开电池盖,去掉小盖板和通气阀。从注液孔观察或检测电解液的存留量,看电解液是否干固。
2.电池的"硫酸盐化",产生原因及判断
(1)铅酸蓄电池的"硫酸盐化"表现特征 铅酸蓄电池的"硫酸盐化"是铅酸蓄电池经使用一段时间后在电池的内部负极板的表面上生成一层白色而且坚硬的硫酸铅结晶体,用一般的充电方法(如三阶段直流充电法)不能把这一层白色的硫酸铅结晶体转化为活性的硫酸铅物质。这就是"硫酸盐化",通常也称"硫化"。负极板硫酸盐化的地方就像罩上了一层坚硬的薄膜,使得里面的活性的物质不能继续参加充放电的电化学反应,导致负极板参加充放电的电化学反应面积大大减少,从而导致电池的失效。动力型VRLA铅酸蓄电池的"硫酸盐化"失效模式是常见的,是普遍发生的。在动力型VRLA铅酸蓄电池的电池失效中,有70%--80%是电池"硫酸盐化"造成的。 动力型VRLA铅酸蓄电池的"硫酸盐化"表现特征是:在没有明显失水的铅酸蓄电池其电解液的密度低于正常值;充电时间大大缩短,充电时电压爬升的特别快,很短的时间就显示充电已充好,电量已满;充电时过早的产生气泡,严重时一充电就有气泡;电池发热厉害,温升加快;电池的容量大大降低;"一充电就到,一放电就光"是铅酸蓄电池的"硫酸盐化"典型特征。
(2)铅酸蓄电池产生"硫酸盐化"的原因
(2.1)电池长时期充电量不足或不能及时对使用过的电池充电 造成铅酸蓄充电量不足的主要原因有: A充电器与电池不匹配造成电池充电量不足,有的充电器充电(如三段式充电器恒充电压)电压设置的偏低,可导致电池长时间充电不足; B充电时间短造成电池充电不足,有的人见充电器的绿灯一亮就把掉充电器,没有对电池进行充分的浮充电; C不能及时对使用过的电池充电,有的人一次性使用时间较短,电没用完,就不及时充电,电池用两三次(两三天或时间更长)后再充电一次; 这样会导致溶解在电解液中的硫酸铅(PbSO4)重新析出,沉积在电池的极板上形成电池的"硫酸盐化"
(2.2)电池长时期过量放电或小电流放电,使极板深处活性物质的孔隙内生成硫酸铅(PbSO4) 电池经常欠电压(低容量)下使用,及易造成负极板的"硫酸盐化";电池自放电严重,时间长了会使形成深放电,也会使电池负极板形成"硫酸盐化"。
(2.3)已放电或半放电状态的电池搁置时间过长 有的电池使用者不能正确认识和使用铅酸电池,对于长期不用的铅酸电池不能正确的定期充电,引起铅酸电池极板形成"硫酸盐化"。严重的会引起不可逆的"硫酸盐化"。
(2.4)电解液的浓度变高,成分不纯,也会引发电池的"硫酸盐化"。
(2.5)电池经常处于变化剧烈的温度环境下,也会引起铅酸电池极板形成"硫酸盐化"。 (2.1)条讲到的铅酸蓄电池失水,会引起电解液的浓度变高;在电解液中混入了其他金属离子或不利物质;从温度较高的环境里迅速的那到温度较低的环境下,会因为温度的降低使溶解在电解液中的硫酸铅(PbSO4)溶解度降低而沉积到负极板上;这些都会引起铅酸电池极板形成"硫酸盐化"。
(3)动力型VRLA铅酸蓄电池"硫酸盐化"的判断
(3.1)充电过程中:充电过程中电池的端电压上升很快,峰植很高,会出现单体铅酸蓄电池电压达2.8 V左右,六个单体组成一块的铅酸电池组电压达到16.2V以上,可判为电池的"硫酸盐化"。
(3.2)放电过程中:放电过程中铅酸蓄电池电池的端电压下降很快,电池的容量明显减少, 可判为电池可能"硫酸盐化"。
(3.3)电解液的检查:检查、测量电池的硫酸电解液明显低于正常值,可判为电池的"硫酸盐化"。
3。动力型VRLA铅酸蓄电池"正极板软化", 产生原因及判断
(1)动力型VRLA电池"正极板软化"的表观现象 对故障电池在充电过程时,抽出一些电解液,观察电解液如果发现发红或发黑,严重的会是墨黑或呈现泥浆状,说明电池正极板已经软化。从正极板外观看,极板开始是坚硬的,随着不当使用及使用周次的增加,极板软化开始发生,发展,逐渐的变松软直到变成糊状。正极板的软化使得极板上的活性物质减少,极板上表面积下降,导致电池的容量大大下降。铅酸蓄电池正极板软化,活性物质的脱落是不可避免的。随着充放电周次的增加,极板上活性物质表面收缩,使小孔集聚增多,使大孔不断增加,破坏了正极板的结构,导致正极板的活性物质软化脱落。
(2)铅酸蓄电池"正极板软化"的原因 铅酸蓄电池正极活性物质是二氧化铅,其本身结构不是很牢固,放电时生成硫酸铅。铅酸蓄电池正负电极充放电电化学反应式为: 正电极反应: PbO2 + 4H+ +SO42- +2e = PbSO4 +2H2O 负电极反应: Pb +SO42- - 2e = PbSO4 电池的总反应:PbO2 + Pb + 2H2SO4 = 2PbSO4 +2H2O 正向为放电反应,反向为充电反应。 硫酸铅的摩尔体积比二氧化铅大,放电时正极板上的活性物质体积会膨胀,一摩尔二氧化铅转化为一摩尔硫酸铅,其体积会增加95%。在使用过程中要反复的充放电,这样正极板就要反复的收缩和膨胀,致使正极板上二氧化铅粒子之间的相互结合能力逐渐下降,二氧化铅粒子之间的相互结合力逐渐松弛,从而导致正极板上的活性物质易于脱落。如果电池的放电深度较小,极板的膨胀、收缩的程度也会减小,结合力的破坏可以变缓慢。所以经常深放电、透支放电使用的铅酸蓄电池会因为铅酸蓄电池正极板软化而使电池的循环寿命大大缩短。铅酸蓄电池正极板的二氧化铅通常主要是由α氧化铅和β氧化铅组成。α氧化铅在正极板上通常尽量少参加电池的放电反应,这样能起一定的支撑作用。α氧化铅只能在碱性的环境中生成,在酸性的环境中只能生成β氧化铅,而铅酸蓄电池是在酸性的环境中工作的。如果α氧化铅一旦参加放电反应,再充电时只能生成β氧化铅,导致正极板软化,在充电析气时,α氧化铅会脱离正极板,部分溶解在电解液中,使电解液变黑。