偏航系统的作用、种类和组成
偏航系统是风电机组特有的伺服系统。偏航系统的主要作用有两个。其一是与风电机组的控制系统相互配合,使风电机组的风轮始终处于迎风状态,充分利用风能,提高风电机组的发电效率,同时在风向相对固定时能提供必要的锁紧力矩,以保障风电机组的安全运行。其二是由于风电机组可能持续地一个方向偏航,为了保证机组悬垂部分的电缆不至于产生过度的纽绞而使电缆断裂、失效,在电缆达到设计缠绕值时能自动解除缠绕。
偏航系统的方案有多种,如阻尼式偏航系统、带有偏航制动器的固定式偏航系统、软偏航系统、阻尼自由偏航系统和可控自由偏航系统等。目前应用最为普遍的有两种,一种是采用滑动轴承的阻尼式偏航系统,另一种是采用带有偏航制动器的固定式偏航系统。
偏航系统是由偏航控制机构和偏航驱动机构两大部分组成。其中偏航控制机构包括风向传感器、偏航控制器、解缆传感器等几部分,偏航驱动机构包括偏航轴承、偏航驱动装置、偏航制动器(或偏航阻尼装置)等几部分组成。
采用滑动轴承的阻尼式偏航系统
滑动轴承的偏航系统是阻尼型的偏航系统。该轴承处于塔架与机舱之间,它把各种力通过轴瓦从机舱传到塔架。滑动轴承的轴瓦大多是用工程塑料制成,这种材料(如PETP,它比尼龙更好)具有良好的综合性能,包括力学性能,耐热性,耐磨性,耐化学品性和自润滑性,且摩擦系数低,有一定的阻燃性,易加工,较好的耐腐蚀性。由于这种材料具有特有的机械性能,使得这种轴承即使在缺少润滑的情况下也能工作。轴瓦由轴向上推力瓦、径向推力瓦和轴向下推力瓦组成。分别用来承受机舱和风轮重量产生的平行于塔筒方向的轴向力,风轮传递给机舱的垂直于塔筒方向的径向力和机舱的倾覆力矩。从而将机舱受到的各种力和力矩通过这三种轴瓦传递到塔架。
滑动轴承阻尼式偏航系统的结构如图1所示。
图中1、偏航电动机,2、偏航减速器,3、偏航卡钳,4、偏航小齿轮,5、塔架。
偏航减速器一般为立式行星减速器或行星/蜗杆减速器,其端部的小齿轮与偏航大齿圈啮合,通过电机驱动,实现偏航对风或解缆。
偏航卡钳是偏航部件中比较重要和结构较为复杂的部件(图2):
1、机舱底盘,2、卡钳与机舱底盘的固定螺栓,3、轴向下推力瓦的固定螺栓,4、轴向下推力瓦,5、径向推力瓦,6、径向推力瓦的固定螺栓,7、防尘橡胶圈,8、塔架与偏航摩擦盘及大齿圈的连接螺栓,9、卡钳内的碟形弹簧,10、卡钳调整螺栓,11、轴向上推力瓦,12、偏航卡钳,13、大齿圈。
偏航卡钳不是一个,如在V52-850kW风电机组上共有四组。轴向上推力瓦起到滑动轴承的作用并承担机舱的重量和机组运行中向下的轴向力。径向推力瓦起到滑动轴承的作用并承担机舱与塔架运行中径向力。轴向下推力瓦起到滑动轴承的作用并承受一定的倾覆力矩。
为避免风电机组在偏航过程中产生过大的振动而造成整机的共振,偏航系统在机组偏航时必须具有合适的阻尼力矩。阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩等来确定。其基本的确定原则是确保风电机组在偏航时应动作平稳顺畅不产生振动。只有在阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。
滑动轴承的偏航系统优点是成本较低,维护方便;采用具有自润滑功能的滑动轴瓦支承方式,不需额外的润滑系统及低速液压制动器,无漏油现象。缺点是结构相对复杂;维护工作量较大;摩擦阻尼力矩较大,这是因为要使对风保持稳定,避免振动,必须有足够的摩擦阻尼力矩,偏航对风时必须克服此摩擦力矩,也就是说,在极限偏航载荷下,有可能机舱滑动。这种偏航系统有时会出现以下故障:
如偏航电机过热(在冬季经常发生),减速器齿轮损坏,轴向下推力瓦损坏,轴向上推力瓦脱落和断角,偏航卡钳调整螺栓断裂,径向推力瓦脱落等。
风电机组偏航系统采用滑动轴承的比较普遍。例如,国外VESTAS公司的V42-600kW,V52-850kW;GAMESA公司的G52-850kW;SUZLON公司的S.60-1000kW,S.66-1250kW,S.88-2MW;ZOND公司的Z-48750kW.我国华锐公司的SL1500-1.5MW(Fuhrlander技术),沈鼓2MW(Windtec技术)都是采用此类偏航系统。
采用滚动轴承带有偏航制动器的固定式偏航系统采用带有偏航制动器的偏航系统是固定型的偏航系统。该轴承处于塔架与机舱之间,滚动轴承把各种力从机舱传到塔架。安装的偏航制动系统,作用在环形制动盘上,提供多个液压制动器,1.5MW的风电机组上就有6个制动器,用来阻止在各种情况下不希望的偏航运动,制动器上的衬垫是用有机材料制成。这种材料要具有稳定的摩擦系数、低磨损率、耐高温。
采用带有偏航制动器的固定式偏航系统的结构如图3所示。
图中1、偏航电动机,2、偏航减速器,3、偏航小齿轮,4、液压制动器,5、塔架,6、偏航摩擦盘,7、大齿圈,8、机舱底盘。
偏航减速器一般为立式行星减速器,其端部的小齿轮与偏航大齿圈啮合,通过电机驱动,实现偏航对风或解缆。偏航制动器需要提供液压源和控制装置。在制动状态,工作油压较高可使机舱固定不动,当偏航对风时,制动器由制动状态转变为具有20-30bar背压的阻尼状态,所以运动是平稳的。当在规定的气候条件下,要求电缆解缆时,制动器改变为松闸状态,此时机舱整圈反转并解缆。
滚动轴承的偏航系统优点是结构简单,对风可靠和无滑动,便于维护;偏航对风时摩擦阻尼力矩不大,对风平稳。缺点是成本较高。
这种偏航系统有时会出现密封漏油和噪声:当摩擦材料配料不均,摩擦副材料不匹配,工作时会引起振动,导致噪声;多次偏航使摩擦表面局部磨损,或制动钳安装不平行,导致局部摩擦力增大,出现噪声。密封圈受热老化,进而影响密封圈寿命,制动器密封一旦破坏,会出现漏油,影响偏航制动力,同时摩擦表面会沾上油污,偏航转动后,摩擦片表面形成釉光层,导致摩擦系数下降,制动效果变差,。选用高质量制动器,精心制造和安装偏航系统各部件,上述问题完全可以解决。目前我国安装的风机其偏航制动器大多数为国外进口,使用国内生产的偏航制动器约为20%以下,其中主要是焦作瑞塞尔盘式制动器有限公司生产,该公司与风电市场对接十余年来,已形成了规模化生产,产品经近十年的市场考验,能满足使用要求,可以替代进口。
现代大型风电机组偏航系统采用带有制动器的滚动轴承固定式偏航非常普遍。例如,国外REpower公司的MD77-1.5MW,REpower5M-5MW;Nordex公司的N60-1300kW;GE公司的GE-1.5s-1.5MW,GEWindenergy3.6MW;:Dewind公司的D6-1MW,D8-2MW。国产风力机中,沈工大
1.5MW、2MW及3MW(已转让20余家),华创1.5MW、东汽1.5MW及3MW、华锐3MW都是采用此类偏航系统。
关于偏航驱动装置的功率问题。风电机组在运行过程中,当调向对风时,偏航驱动装置的功率应能克服偏航阻力矩M。而在计算偏航阻力矩时应考虑到如下几方面:
M=Mf+Mw+Mp+Mz+Mtv
式中:Mf--回转支承的摩擦阻力矩;Mw--风压作用于风轮和机舱上所引起的风阻力矩;Mp--当偏航启动时,由机组中惯性力矩所引起的惯性阻力矩;Mz--由阻尼机构引起的阻尼力矩;Mtv--由于风轮主轴的倾角所产生的扭矩分量引起的偏航阻力矩。
例如,1.5MW固定式滚动轴承偏航,其Mf和Mz的总合为M值的40%-50%,如果采用阻尼式滑动轴承偏航,Mf将减少,而Mz将增大,最终对偏航驱动装置的功率影响并不大。
关于液压系统的问题。固定式偏航中,偏航制动器与高速轴制动器组成一个液压系统(液压站)。即使是阻尼式偏航,高速轴制动也需要有一个液压系统(液压站)。
发展趋势
目前和今后,固定式偏航仍然是主流。我国自主研制的机型大多数为固定式偏航,特别是3MW及3MW以上大型机组都为固定式偏航。