当今企业的竞争集中表现在产品款式、新产品开发周期及产品生产规模方面。模具作为新产品生产的关键工装,其设计与生产日益成为新产品开发周期的决定因素。在
汽车工业中,过去新车型的开发周期一般为十年,现在缩短为二到三年,福特及丰田新车型的开发周期仅为一年半,这一切都得益于企业模具设计与制造水平的提高。 高速加工技术随着数控加工设备与高性能加工
刀具技术的发展而日益成熟,极大地提高了模具加工速度,减少了加工工序,缩短甚至消除了耗时的钳工修复工作,从而大大地缩短了模具的生产周期。模具的高速加工技术逐渐成为我国模具工业技术改造最主要的内容之一。什么是高速加工?高速加工与传统加工在加工工艺上有什么区别?高速加工对加工设备、刀具、夹具及相应的CAD/CAM系统提出了什么特殊的要求?高速加工有哪些技术优势?这些一直是我国模具行业面临的主要问题。 英国Delcam公司是世界上最早致力于高速加工工艺及相应CAD/CAM技术研究的专业CAD/CAM集成系统开发商之一。
该公司也是世界上唯一拥有大型模具加工车间的CAD/CAM软件系统开发商。Delcam公司模具车间自1985年购进多台Briageport VF1000 高速加工中心,又于1995年引进行程为6m的Mecof 5轴联动高速加工中心,以进一步加强高速加工工艺及CAM系统的研究。1999年3月又成功地举办了欧洲首届HSM技术研讨会暨HSM现场加工展示会,来自世界各地的100多位专家介绍了各自的经验。 高速加工技术在我国刚刚起步,众多企业非常关注高速加工的发展及在模具行业的应用,以及高速加工的工艺特点,高速加工对设备、刀具的特殊要求以及高速加工对CAD/CAM系统的特殊要求。故将Delcam HSM技术研讨会暨HSM现场加工展示会的资料整理成文,希望与我国从事模具高速加工的工程技术人员交流。 关于高速加工的定义 60多年前,Salomon提出高速加工的概念,并对高速加工进行了深入的研究,其研究成果表明:随着切削线速度的增加,温度及刀具磨损会剧烈增加,当切削线速度达到某临界值时,切削温度及切削力会减小,后又随着切削速度的增加而急剧增加。
从图1可看出,以刀具磨损的切削力为限制条件,前一个低于该值的区域是传统加工,后一个低于该值的区域为高速加工。由此也可看出,不同材料有不同的加工临界值, 有其高速加工的特定范围。刀具材料与质量是高速加工最主要的限制条件之一,故高速加工不仅决定于主轴速度与刀具直径,还与所切削的材料、刀具寿命及加工工艺等综合因素有关。 高速加工是缘起自航空铝合金材料零件的加工,高水平合金涂层刀具的寿命不是主要的限制因素。高速加工主要受设备主轴速度及材料熔点的限制,一般主轴速度为50000~60000r/min或更高。本文主要关注塑料模具、压铸模具、冲压模具及锻模等用的合金模具钢的高速加工,这种材料的硬度一般超过洛氏50度,故高速加工的限制因素主要是刀具寿命,而非铝加工中的主轴速度。对于小型模具细节结构的加工,主轴速度可达40000r/min以上,而大型汽车覆盖件模具的加工,一般主轴速度12000r/min以上的加工即可称为高速加工。 高速加工的分类及优势 Delcam高速加工的研究表明,高速加工按其目的而言应分为两类,即以实现单位时间去除材料量最大为目的的高速加工,和以实现高质量加工表面与细节结构为目的的高速加工。任何模具的高速加工都是这两类技术的综合运用。相对而言,后者因极大地减少了钳工抛光、修复时间,减少甚至消除了部分工序,因而大大缩短了模具的生产周期。 与传统加工方式相比,高速加工(HSM)的优势如下: 高速加工提高了模具加工的速度 对于精加工,从材料去除速度而言,高速加工比一般加工快四倍以上——尽管高速加工采取了非常小的进给速度与切深,对粗加工而言高速加工可理解为45m3/min的切削量。 高速加工可获得高质量的加工表面 因高速加工采取了极小的进给量与切深,故可获得很高的表面质量,有时甚至可以省去钳工修光的工序,因表面质量的提高又省去了修光及点火花等工序所需的时间。 简化了加工工序 传统铣削加工只能在淬火之前进行,因淬火造成的变形必须要经手工修整或采用电加工最终成形。现在则可以通过高速加工完成,省去了电极材料、电极加工编程及加工,以及电加工过程所需所有费用,而且不会出现电加工所导致的表面硬化。
另外,由于高速加工切削量减少,便可使用更小直径的刀具对更小的圆角半径及模具细节进行加工,节省了部分加工或手工修整工艺。减少人工修光时间及工艺的简化对缩短生产周期的贡献甚至可超过高速加工速度提高而产生的价值。 使模具修复过程变得更加方便 模具在使用过程中往往需要多次修复,以延长使用寿命,过去主要是靠电加工来完成,如果采用高速加工可以更快地完成该工作,而且可使用原NC程序,无需重新编制,且能做到精确无误。