1、地质样品
原子荧光光谱法最早应用在地质样品测试中,源于早期我国大规模化探工作的开展。目前,土壤、岩石、水系沉积物、煤炭和各类矿石样品中,As、Sb、Bi、Hg、Se、Ge最常用的测试方法就是原子荧光光谱法。地质样品基体复杂,是应用技术研究较多的领域。
1)样品分解
在样品分解方面,除传统酸溶分解外,采用艾斯卡试剂(碳酸钠和氧化锌)作焙烧试剂,焙烧富集分离地质样品中痕量Te、Se,使被测元素与基体分离,能有效地消除干扰。碱熔分解样品虽不常用,但是为了节省时间,测定地质样品中的Ge时,可以共享W、Mo、F的KOH碱熔体系溶液,磷酸酸化后直接测定,Ge的检出限为0.1μg/g。另外,可采用Na2O2熔解样品,盐酸酸化,无需分离基体,连续测定锑精矿中的As、Bi、Se、Sn。
2)基体干扰及消除
基体干扰是地质样品测试中的重要研究内容,原子荧光光谱法的干扰主要来源于共存的过渡金属、贵金属以及能够同时形成化学蒸气的元素。“碱性模式”是将碱性溶液直接氢化反应,能更大程度消除过渡金属和贵金属的干扰,采用碱性模式测定地质样品中的Ge、铁矿石中的As和多金属矿中的Bi,效果良好。
2、生物样品
在农业、食品、卫生防疫、医药、环境等领域生物样品检测中,原子荧光光谱分析发展非常迅速。生物样品多种多样,包括食品、中(成)药、水产品、植物、动物组织及代谢物,待测元素含量低、有机基体是其主要特性。有关有机组分干扰原子荧光光谱法的研究报道不多,酸消解生物样品时,如果有机基体未被充分破坏,部分有机物以不饱和有机酸的形式残留在消解液中,从而可能对一些元素的测试产生干扰。研究证实,有机质对As、Sb、Bi、Cd的测定有明显影响,因此,元素全量测定时必须要对有机组分进行彻底消解。消解方法除传统敞开酸溶外,高压罐消解法和干灰化法也有应用,更具优势的微波消解法更是受到青睐。
3、原子荧光光度计故障排查
原子荧光光度计在对土壤的砷元素检测时,其荧光强度非常低,并且不会随着标准浓度变化而变化,标准下的浓度荧光强度基本上和空白时相同。根据原子荧光光度计的工作原理,其故障发生在荧光检测仪器内、原子化系统、氢化物发生系统、气路系统及电子线路部分的可能性极大。荧光检测器原子化系统排查时需注意,使用原子荧光技术检测砷元素时,检测过程中会产生有关砷的氢化物,所以检测时必须要提供原子化温度。原子化温度主要是由氩氢火焰提供的,炉丝除了点燃火焰外,其自身还有保持炉体温度的作用,所以炉丝在供电电压过低的情况下,虽然也能点燃火焰,但炉体温度过低会导致原子化效率,导致基态原子生成不足,使荧光的强度也过低,因此检测时必须要达到合适的原子化温度才可进行检测。
标签: 原子荧光光谱