基于MCF51EM256的智能电动机保护器的设计及应用

来源:网络  作者:网络转载   2019-09-22 阅读:788

摘要:采用Freescale公司Coldfire-V0架构内核的32位处理器MCF51EM256芯片,设计了一款高性能的ARD2L智能电动机保护器,并对该保护器的硬件和软件设计方案进行详细介绍。该保护器集众多保护功能于一体,提高了电动机运行的可靠性,减少了因电动机运行故障带来的经济损失。

关键字:智能电动机保护器、MCF51EM256、ARD2L、保护时间

0引言

本文设计了一款针对电动机在运行过程中出现的起动超时、过载、欠载、短路、断相、不平衡、接地/漏电、堵转、阻塞、外部故障等情况进行保护的ARD2L智能电动机保护器(以下简称ARD2L),可有效提高电动机运行的安全性,降低生产损失,是传统热继电器的理想替代品[3]。

1硬件设计

ARD2L的硬件电路包括主控芯片MCU,频率信号、电流信号、零序电流信号采集电路,开关量输入模块,继电器输出模块,变送输出模块,RS-485通讯接口,人机交互单元(状态指示灯、数码管/液晶显示),硬件电路框图如图1所示。

1.1主控芯片

MCU芯片采用freescale公司的Coldfire-V0架构内核的32位处理器MCF51EM256,时钟频率最高可达50.33MHz,内置256K的Flash、16K的RAM、4个独立16位A/D通道、3路定时器、3路SCI通讯接口以及内置RTC时钟、I2C、SPI、KBI接口等多种资源,具有极高的性价比。

1.2电源

电源是设备能否正常、稳定、可靠工作的关键部分,ARD2L采用安科瑞的通用开关电源模块。该模块输入电压为AC85V~265V,输入频率45Hz~60Hz,具有多路隔离电压输出,满足多种功能对不同供电电压的要求。其输出电压稳定、故障率小,输出纹波<1%;电源输入部分设计加入压热敏电阻、TVS管、防反接二极管等器件,对过压、过流等有一定的保护作用,同时能使产品通过严酷的EMC测试。该模块经现场实际使用,具有很高的稳定性、可靠性和抗干扰能力[4]。

1.3信号采集电路

信号采集电路负责采集电流信号、频率信号和零序电流信号。其中,电流信号采用互感器隔离输入,将交流信号抬高后送入CPU进行软件差分运算,电流采样电路如图2所示。以A相6.3A规格为例,采用的电流互感器变比为100A:20mA,5P10保护型。该方案电流测量在1.2倍范围内达到0.5S精度,在8倍范围内满足5S精度,而其过载能力按8倍计算,即给互感器加上50.4A电流,通过取样电阻R1的电流为10.08mA,两端电压为0.886V。同时,给采样信号抬高电压UREF=1.2V,使交流信号的幅值大于零,便于A/D采样;在电路的输出端加入限压二极管,使输入电压限制在3.3V以下,能对A/D采样通道起到很好的保护作用。

 

 

 

频率采样电路如图3所示。该电路采用MCP6002双运放进行两级放大,初级放大倍数较小,且在初级与次级之间进行滤波处理,次级运放将交流信号整形为方波信号,通过边沿触发方式捕捉,然后在CPU内部计算测量率。

 

1.4人机交互界面

人机交互界面的显示采用数码管或液晶两,用户可以根据实际需要选择显示方式,输入采用按键方式。其中,数码管显示采用动态扫描方式,其驱动电路采用74HC595和三极管构成;液晶显示采用拓普威公司LM12832BCW的128点阵中文液晶,其数据传输采用SPI串口,可极大地节省CPU资源。同时,LED和LCD显示采用同一个SPI接口控制,使得两种显示方式可以通用。

1.5控制模块

控制模块主要由开关量输入、输出组成,如图4所示。其中,开关量输入用于监测断路器、接触器的开关状态和采集现场的工业联锁状态,也可根据客户要求用于电动机的起停控制;开关量输出主要用于输出脱扣信号、报警信号和远程起/停信号。

 

图4 开关量输入输出电路

 

1.6 通讯/变送模块

 

通讯模块采用RS-485模块Modbus RTU通讯规约,能实现遥测、遥控、遥信等功能。而变送是将我们需要的电流信号转换为DC 4~20mA模拟量输出,方便与PLC、PC等控制机组成网络系统,实现电动机运行的远程监控。

 

2 软件设计

 

ARD2L的软件设计主要采用嵌入式C语言,其中保护器软件设计包括每次上电系统配置的初始化,按键寄存器复位,判断显示单元是数码还是液晶,继电器置位初始状态,A/D采样初始化以及电参量的计算与保护等。软件的主函数如下:

 void main(void)                    

{

  DisableInterrupts;                     

  MCU_initi();                                  //CPU初始化                              

      if(_RES==0)                                 //判断是数码管或液晶显示

    led_or_lcd=0;                 

  else

  {

    led_or_lcd=1;                 

    PTBDD_PTBDD2=1;         

    PTDDD_PTDDD4=1;          

    lcd_init2();

  }

  recover_FIRSTFLAG();              //恢复内存校表数据                         

  if(FIRSTFLAG!=0x1234){init_flash();}

  else recover_byte();

   initi_uart2();                                

  relay_all_initi();                 //继电器至位初始状态

  EnableInterrupts                             //启动中断

   Vref_init();                    

  sampling_init();                 //AD采样初始化

  for(;;)

  {

    __RESET_WATCHDOG();              

    if(over_flag==1)                     //计算及保护

    {

      over_flag=0;

      measure_ABC();        

      protect();

      sent();                                   // 变送输出

    }

       measure_frequency_a();             // 测频

    rtc_time_deal();                        

    warning_deal();

    trouble_deal();

    program1();                              // 继电器可编程处理

                   

    event_deal();                             

    getkey();

    DI_read();

    reset();                                     // 复位

    lamp_deal();                            

    stat();                                     // 统计总运行时间、停车时间

        display();                                  // 测量数据和保护事件显示       

  }

}

ARD2L的软件流程主要包括A/D信号采集程序、TPM测频程序、电参量计算程序、保护处理程序、各种通讯协议处理程序等,部分程序流程如图5。

 

 

图5主程序流程图(部分)

3测试结果与精度验证

3.1电流准确度测试结果

电流准确度测试源采用南京丹迪克的DK-34B1交流采样变送器,其中对基波的测试是通过加40%畸变率的3次谐波进行的。表1测试了6.3A规格的ARD2L智能电动机保护器三相电流的有效值与基波值,由表中数据可看出,ARD2L智能电动机保护器在10%~120%Ie测量范围内的精度满足0.5级,Ie为电机额定功率[5]。表1ARD2L智能电机保护器三相电流测试结果

 

指标

标准值

6.3A规格

A相

B相

C相

有效值

基波

有效值

基波

有效值

基波

电流

0.63

0.62

0.59

0.64

0.59

0.62

0.58

6.3

6.29

5.91

6.31

5.92

6.29

5.89

7.56

7.54

7.05

7.55

7.06

7.54

7.03

 

 

3.2保护时间测试结果

ARD2L智能电机保护器具备起动超时、过载、欠载、短路、断相、不平衡、接地/漏电、堵转、阻塞、外部故障等保护功能,根据JB/T10736-2007标准进行了保护时间测试,见表2。

表2ARD2L保护时间测试结果

起动超时:

 

脱扣延时(S)

0.1

10.0

999.9

第一次

0.110

9.950

993.882

第二次

0.117

9.965

993.859

第三次

0.119

9.961

993.872

 

阻塞保护:脱扣域值(250%)

 

脱扣延时(S)

0.1

5.0

600.0

第一次

0.122

5.031

596.455

第二次

0.128

5.037

596.458

第三次

0.134

5.043

596.431

 

欠载保护:脱扣域值(50%)

 

脱扣延时(S)

0.1

5.0

600.0

第一次

0.130

5.012

596.401

第二次

0.134

4.996

5.96.393

第三次

0.129

5.015

596.349

不平衡保护:脱扣域值(30%)

脱扣延时(S)

0.1

5.0

600.0

第一次

0.126

5.003

596.400

第二次

0.131

5.009

596.362

第三次

0.121

5.007

596.354

 

接地/漏电保护:脱扣域值(80%或30mA)

 

脱扣延时(S)

0.1

0.5

600.0

第一次

0.117

0.519

596.444

第二次

0.124

0.528

596.432

第三次

0.135

0.517

596.416

短路保护:脱扣域值(500%)

脱扣延时(S)

0.1

10.0

600.0

第一次

0.135

9.973

596.564

第二次

0.133

9.969

596.472

第三次

0.136

9.967

596.526

 

断相保护:

 

脱扣延时(S)

0.1

1.0

600.0

第一次

0.124

1.036

596.456

第二次

0.138

1.033

596.382

第三次

0.132

1.035

596.179

 

外部故障:

 

脱扣延时(S)

0.1

5.0

600.0

第一次

0.126

4.976

595.711

第二次

0.112

4.989

595.801

第三次

0.124

4.988

595.836

 

由表2可知,该保护器满足脱扣延时保护时间误差为±10%或100mS的精度要求[6]。

4典型应用

采用直接起动模式的ARD2L智能电动机保护器接线如图6所示。其中,电机的起停是通过现场按钮来控制的(保护器本身不控制电机起停),接触器KM的吸引线圈串进脱扣继电器的常闭触点。通电后,按下起动按钮SF时,KM吸引线圈得电,使KM主触头闭合,电动机开始工作;按下停车按钮SS时,KM吸引线圈失电,使KM主触点释放,电机停止工作。远程起动必须要由上位机来控制,保护器本身不控制。

 

图6  ARD2L电机保护器直接起动模式接线图

 

5结束语

本文采用EM256设计了性能、多功能的ARD2L智能电机保护器,并对其电源、信号采集、输入输出控制等硬件电路进行了详细介绍,通过软件主函数和流程图分析了保护器运行过程。电流准确度与保护时间的测试结果表明,该保护器具有优异的测量与保护功能。

文章来源:《电工技术》2014年第3期

参考文献:

[1]马新军,电机保护器设计,硕士学位论文,东北大学,2005.

[2]丁金磊,基于ARM的电动机综合保护器装置设计,硕士学位论文,2008.

[3]安科瑞电气股份有限公司,ARD2智能电动机保护器选型手册,2013.

[4]任志程,周中,电力电测数字仪表原理与应用指南,中国电力出版社,2007.

[5]ARD3系列智能电动机保护器,上海市企业标准,Q/TDEI27-2011

[6]JB/T10736-2007低压电动机保护器.

标签: 电动机
打赏

免责声明:
本站部份内容系网友自发上传与转载,不代表本网赞同其观点;
如涉及内容、版权等问题,请在30日内联系,我们将在第一时间删除内容!

购物指南

支付方式

商家合作

关于我们

微信扫一扫

(c)2008-2018 DESTOON B2B SYSTEM All Rights Reserved
免责声明:以上信息由相关企业或个人自行免费发布,其真实性、准确性及合法性未证实。请谨慎采用,风险自负。本网对此不承担任何法律责任。

在线咨询

在线咨询:

QQ交流群

微信公众号