微通道反应器在使用中的问题分析

来源:网络  作者:网络转载   2019-10-04 阅读:757

    微通道反应器可以显著提高物料的传质传热效果,缩短反应时间,提高产品收率,而且安全、节能、环保,因而在化工、医药、染料及农药等行业都受到了广泛关注。


    谈起氧化,化学上有很多氧化剂,包括高锰酸钾,铬酸,硝酸等等,然而这些化合物都对环境有巨大的污染,废物处理十分麻烦。


    所谓绿色化学,就是原子的利用效率最高,没有副产品。随着市场竞争的加剧、环保的压力,寻找洁净的氧化剂,包括氧气和双氧水,则非常有利。然而氧气是助燃物,在传统釜式反应的应用中受到相当的限制,一是腐蚀性,二是安全性受到了巨大的挑战。

 

11.jpg


    实验中如果遇到停留时间不够会造成导致原料没有反应完全,这时该怎么办呢?


    1、提高反应温度


    我们知道,间歇反应釜的最佳反应条件是与反应釜相匹配的。工业反应釜的体积大,一次处理的物料量多,因此传质效果不好,单位时间内分子间的有效碰撞次数少,因而反应速率比较慢。可知反应速率常数是与反应温度成正比的。这是因为,提高反应温度可以提高分子的平均动能,单位体积内由基态转化为过渡态的分子数目增多,比例变大,更多的分子就能跨过势垒,即通常所说的活化能,因而反应更容易发生,表现在宏观上就是反应速率加快了。


    由此可以看出,反应温度对反应速率起着至关重要的决定性作用。


    但是在很多反应过程中,我们不能任意提高反应温度,一方面温度过高有可能导致结焦等副反应的发生,另一方面则主要受制于传统反应釜糟糕的传热效果。化学反应往往伴随着剧烈的热效应,对于放热反应,反应速率越快,放热也就越剧烈,而工业反应釜有限的换热面积满足不了反应的换热需求,为避免飞温,只能通过降低反应温度、牺牲反应速率来实现对温度的有效控制,然后通过延长反应时间来达到充分反应的目的。


    这就是为什么很多低温有机金属反应要在-20℃甚至-40℃的条件下进行,以及为什么大部分硝化反应都要通过滴加原料的方式进行。


    然而,这些问题不再是微通道反应器的桎梏。微通道反应器提高反应温度的成功案例比比皆是,甚至可以说是最有效的缩短反应时间的方法之一。


    因此,当实验中出现原料反应不完全的情况时,首先可以考虑一下:反应温度是不是设置的过低了?一般来说,微通道反应器的反应温度可以比间歇反应釜的温度提高10~20℃左右。

 

13.jpg


    2、提高反应物浓度


    反应速率除了与分子的平均动能有关,还与单位体积内反应物分子的数量有关,如图4所示,即从理论上来说,反应物浓度越高,越有利于反应的发生。但在间歇反应釜中,有时候却会选择相对较低的反应物浓度,主要是从以下几个方面考虑:


    (1)控制反应速率。如前所述,在间歇反应中,有时候因换热跟不上或者搅拌不均匀,容易造成局部过热,从而发生结焦或其他副反应,影响产品选择性和收率。这时,采用较低的反应物浓度就是比较明智的选择,但相应地也要付出反应时间长的代价。


    (2)避免发生二次反应。除了结焦,较高的反应物浓度还容易导致二次反应的发生,比如过硝化、过氧化等等,为避免非目的产物的生成,往往也需要对反应物的浓度进行调整。


    (3)利用溶剂换热。有些溶剂除了对反应物起到分散作用,本身也具有良好的吸热能力,因此是很好的换热介质,比如浓硫酸在硝化反应中就常常同时起到催化剂和换热介质的作用,这时也会加大溶剂的量,从而降低反应物的浓度。


    因此在进行实验的过程中,首先要明确反应物选择该浓度的原因是什么。如果是受制于反应釜的换热能力,那在微反上可以大胆尝试提高反应物的浓度,往往会得到令人满意的结果。小编最近做的一个硝化反应,反应釜中硝酸的浓度是16~20%,在微反上采用相同的酸浓度,产品收率只有60~70%,气相色谱分析结果显示,还有很多原料没有反应完全。而当把酸浓度提高到35~40%之后,产品收率立刻达到了95%以上。


    由此可见,之前的实验正是被低浓度的硝酸限制了反应速率。如果选择较低的浓度是为避免二次反应的发生,那么则要谨慎提高反应物浓度,但由于微反的停留时间很短,有时候二次反应还来不及发生反应即被终止,那这种情况下也可以通过提高反应物浓度来缩短停留时间,实现提高产品收率的目的。

 

12.jpg


    3、降低流量


    如果通过提高反应温度和反应物浓度的方法均不能有效缩短反应的停留时间,使反应完全,那这个时候就可以尝试在其他条件不变的情况下降低物料的流量。微通道反应器小试设备的标准配置是10片反应片,因此反应器的容积是确定的,在持液量保持不变的情况下,降低物料的流量,则会相应延长反应的停留时间。


    但这里需要注意的是物料的流量不能降得特别低,否则物料不能完全充满微通道,则会失去微通道的混合与传质效果。


    4、增加盘管或反应片


    通过前面介绍的三种方法,大多数反应过程停留时间不够的问题应该都能得到有效解决。但对于个别的特殊反应,在尝试以上三种方法均无果的情况下,则只能考虑提高反应器的持液量,即增大反应器的容积。通常采取的措施是先在微反应器出口连接一段盘管,使反应体系在盘管中继续发生反应,然后对盘管出口的物料进行分析检测。


    如果分析结果显示停留时间的延长确实有助于原料的转化,可以使反应更完全,那这时则可以根据实际所需的停留时间,定制反应片数更多的微反应器,或者直接将两台或多台微反应器串联使用。


    最后说一下,相比于釜式反应来说,连续流微通道的确在操作上要安全、环保、方便,根据反应的可行性来选择恰当的反应器是很重要地。最近接触到在做的一些反应:


    1、氯化反应,主要针对用氯气做为原料来进行的取代反应,因为氯气危险性,采用微通道反应器,一个是氯气的摩尔当量更合理,一个安全性更可控。


    2、硝化反应,硝化反应因为其反应的特点 ,速度快、放热量大、原料本身燃爆危险性、产物或副产物的爆炸危险性,而硝化反应事故也时时能看到,如7月中旬四川宜宾一个生产5-硝基间苯二甲酸的化工企业就发生了爆燃事故,所以硝化反应是化学工艺从业者应想尽办法改进的一个重要反应。


    3、重氮化反应,重氮化产品的毒性高、稳定性差,所以工业上的应用受到限制,但是在微通道连续流的条件下,可以实现在线消耗(增加反应模块,直接进入到下一步的反应) ,极大的降低危害与污染的风险。


    4、氢化反应、因为其强烈的放热效应,那微通道 反应的高效的传热效果就体现出来了,能精准的控制好反应的温度,减少催化剂的使用量。


    5、光化学反应,这个感觉 ,光反应与可视化的连续流反应设备的搭配是必然的,尤其是可见光催化这一块。这个也是我们重点在做的。


    微反应器设备根据其主要用途或功能可以细分为微混合器,微换热器和微反应器。由于其内部的微结构使得微反应器设备具有极大的比表面积,可达搅拌釜比表面积的几百倍甚至上千倍。微反应器有着极好的传热和传质能力,可以实现物料的瞬间均匀混合和高效的传热,因此许多在常规反应器中无法实现的反应都可以微反应器中实现。


    目前微反应器在化工工艺过程的研究与开发中已经得到广泛的应用,商业化生产中的应用正日益增多。其主要应用领域包括有机合成过程,微米和纳米材料的制备和日用化学品的生产。

标签: 反应器
打赏

免责声明:
本站部份内容系网友自发上传与转载,不代表本网赞同其观点;
如涉及内容、版权等问题,请在30日内联系,我们将在第一时间删除内容!

购物指南

支付方式

商家合作

关于我们

微信扫一扫

(c)2008-2018 DESTOON B2B SYSTEM All Rights Reserved
免责声明:以上信息由相关企业或个人自行免费发布,其真实性、准确性及合法性未证实。请谨慎采用,风险自负。本网对此不承担任何法律责任。

在线咨询

在线咨询:

QQ交流群

微信公众号