皮江法炼镁工艺用能状况诊断及节能措施

来源:网络  作者:网络转载   2019-10-14 阅读:288

一、引言

我国是资源极丰富的国家,储量占世界第一,也是全球镁产量第一大国。我国的属镁生产工艺99%以上采用的是皮江法(又称硅热还原法)。皮江法是1941年由加拿大教授皮江(Lioyd M·Pid-geon)发明的一种炼镁工艺。其方法是将用回转窑或竖窑煅烧后的白云石和硅磨成细粉,按一定配比混合压成团块装入用耐热钢制成的还原罐内,在1200℃左右及抽真空至绝对压力为10~20Pa范围内进行还原得出镁蒸汽,冷凝后成为结晶镁,再熔化铸成镁锭。它的主要优势在于投资及运营成本低,原料的价格便宜,建厂快,产品质量好。但传统的皮江法炼镁存在的主要问题是:能耗很高,会对环境产生污染。因此,节能降耗,改进工艺,降低排放,提升我国皮江法炼镁水平,是巩固和加强我国金属镁行业在全球的龙头地位和实现可持续发展的根本途径。

回转窑和还原炉是皮江法生产金属镁工艺中的主要热工设备,同时也足主要的能源消耗设备。本文通过对这些热工设备和工艺环节的用能现状进行系统分析,并以此来讨论我国金属镁业的节能方向和具体措施。

二、主要热工设备的用能状况诊断

(一)回转窑热利用率的计算

回转窑是煅烧白云石的装置,白云石在煅烧过程中,于630~780℃的范围内发生吸热分解反应生成CaCO3和MgCO3,接着MgC03(750~800℃)继续分解成MgO和CO2,于910℃左右(780~930℃范围内)则发生CaCO3的吸热分解,最终分解生成CaO和MgO。白云石在回转窑里主要进行的反应是:

CaCO3·MgCO3(s)=CaO(s) MgO (s)+2CO2(g)

下标s和g分别表示固态和气态。此反应在910℃左右进行,根据上述反应中各物质的热物性,可以求得常温下(25℃)和910℃时方程式中各个物质的焓值,如表1示。

表1  常温 (25℃)和910℃时物质的焓值       KJ/mol

温度

物质

CaCO3·MgCO3

CaO

MgO

CO2

25℃

-2326.30

-634.29

-601.24

-393.51

910℃

-2136.50

-588.27

-557.83

-349.74

在反应发生前窑内的高温烟气先将白云石加热到910℃左右,在这一过程中白云石吸收的热量等于其焓变。

然后反应(1)发生,将910℃时生成物的焓减去反应物的焓值,可以得到在该温度下反应(l)的反应热。

通过计算可以得到回转窑的耗能状况如表2示。

表2  回转窑的耗能状况

项目

单位

热耗

白云石预热所需的热量

KJ/moL

189.90

反应理论所需热量

KJ/moL

290.92

生成物的显热作为有效热时回转窑的所需热量

KJ/moL

480.72

生成物的显热

KJ/moL

176.97

生成物的显热不作为有效热时回转窑所需热量

KJ/mo

303.75

目前实际平均耗热量

KJ/mo

1376.86

生成物的显热作为有效热时回转窑的热效率

%

24.6

生成物的显热不作为有效热时回转窑的热效率

%

22.1

(二)还原炉热利用率的计算

在还原炉里的还原罐中主要发生的反应为:

MgO(s)+CaO(s)+1/2Si(s)=Mg(g)+1/2(2CaOSiO2)(s)             (2)

此反应在1200℃左右进行,根据反应前后物质的热物性,可以求得各物质在常温(25℃)下和反应温度下(1200℃)的焓值,见表3。

表3  常温 (25℃)和1200℃时物质的焓值       KJ/mol

温度

物质

MgO

CaO

Si

Mg

2CaO·SiO2

25℃

-601.24

-634.29

0

0

-2305.80

1200℃

-542.05

-571.60

30.67

171.42

-2092.94

炉内火焰和高温烟气首先将还原罐内的反应物加热到1200℃左右,在这一过程中物料吸收的热量等于其焓变。然后反应(2)发生,将l200℃时生成物的焓减去反应物的焓值,可以得到在该温度下反应(2)的反应热。

在实际生产中,反应并不能进行完全,仍然会有一部分的反应物没有参加反应。目前我国炼镁的实际操作中,镁的还原率约为71%,由此可以计算得出还原炉的耗能状况如表4示。

表4  还原炉的耗能状况

项目

单位

热耗

球团预热所需的热量

KJ/moL

137.22

实际操作中的镁的还原率

%

71.0

反应理论所需的热量

KJ/moL

158.54

生成物的显热作为有效热时还原炉所需的热量

KJ/moL

295.76

镁渣的显热

KJ/mo

191.00

生成物的显热不作为有效热时还原炉所需的热量

KJ/mo

104.76

目前实际平均耗能

KJ/mo

3435.13

生成物的显热作为有效热时还原炉的热效率

%

8.61

生成物的显热不作为有效热时还原炉的热效率

%

3.05

三、主要热工设备的节能对策

从上述的计算可知回转窑和还原炉这两个最主要的热工设备的热效率都很低,因而都有极大的节能潜力。特别是还原炉的热利用率低得惊人,而其消耗的能源又在全系统所消耗的能源中占的比例最大,因此对还原炉节能有着更重大的意义。

(一)还原炉的节能对策

热效率太低是制约镁厂发展的关键,而其中的瓶颈就是还原炉的热效率过低,要想提高镁厂的综合热效率,必须要解决还原炉热效率过低的问题,因而如何提高还原炉的热效率显得极为重要,也是解决问题的关键所在。

1、研究新式的还原炉型

传统的还原炉在布置还原罐时最多只能布置两层,炉膛内的受热面积有限,烟气的温降很小,使得炉子的排烟温度高达1100℃。若在炉子内增加还原罐的排数,可以增大炉膛内的受热面积,从而降低排烟温度,提高还原炉的热效率。同时,也可通过改进炉型更好地组织炉膛内的流场和温度场,使得炉膛内的温度均匀,从而提高反应的速度,缩短反应周期。

2、设计合理的还原罐结构

皮江法炼镁是一个间歇式的还原过程,还原的周期长。如果能够缩短还原所需的时间,就会极大地提高还原炉的热效率。现在广泛使用的还原罐在还原过程中热量必须要由外及里传递,因此反应也必须由外及里进行,直到罐中心的球团全部被反应完全为止,反应才完全结束。并且球团参加反应后,剩下的残骸的传热情况恶化,不利于传热和反应的进行。因此,在反应进行的过程中,随着反应的进行,热量沿罐半径穿过单位深度时所能还原的球团的质量分数减小,反应的速度会越来越慢。为了加快反应的速度,可以用双面加热即内外都加热的方式。

3、充分合理利用还原炉的高温烟气

从还原炉出来的烟气温度高达l100℃,其品位很高。这部分的热量一般用余热锅炉产生蒸汽,然后用蒸汽抽真空。通过这种方式也使烟气在一定程度上得到了利用。但是将l100℃的烟气直接通过余热回收的方式来利用并不能充分利用烟气的可用能(exergy)。

最合理的利用方法是把这部分高温烟气热量按质合理利用,按量充分利用。例如,可以首先用高温烟气预热物料,助燃空气,然后再用余热回收装置回收烟气的余热,最后再排出。这样可以极大地减少燃料的消耗,既可减小热能损失又可减小可用能 (exergy)的损失。

4、镁渣热量的利用

从还原罐出来的镁渣温度高达1000℃,会带走很多的热量。因为还原炉出渣过程并不连续,现阶段这部分热量并没有得到利用,而是白白浪费了。可以使用余热锅炉来回收这部分能量。在还原罐进出料口下铺一层水管,从罐中的渣扒出来后覆盖在水管上,渣的显热被水吸收,加热后的水储存到余热锅炉中,渣待冷却后再运走。

(二)回转窑的节能对策

回转窑的热损失主要为烟气带走的热量、煅白带走的热量和回转窑窑体向外散失的热量,减小或者有效地利用这些热量都可以提高回转窑的热利用率。

1、利用烟气余热预热物料

回转窑排烟温度仍然还有400℃左右,仍然还可以继续利用使排烟温度进一步降低。回转窑里的烟气最直接的利用方式就是用来预热物料(白云石矿),比较简单有效的方法是增加一个立式预热器,烟气从下往上流动,而白云石从上往下移动,形成逆流,烟气温度可以降得很低,使烟气的余热得到较充分的利用。

2、安装筒体换热器回收和减少回转窑窑体散热

因为窑筒的温度较高,因而不可避免地要向外散失热量,这部分的热量只有部分被利用,大部分的仍然散失到环境中了。在回转窑窑筒上安装空气预热装置来预热空气是一个很好的利用简体热量的办法,将回转窑的预热区也安装上空气预热器,将这些预热器从窑尾到窑头依次串接起来,可将空气预热到较高的温度。

3、剩用煅白显热预热助燃空气

因为从回转窑窑头出来的煅白温度很高(1100~1200℃),炽热的煅白将带走大量的热,这部分显热并没有被利用,而是直接散失于环境中。从窑头出来的煅白的温度显然应该比简体的温度要高很多,因而可以考虑将从简体外预热中的空气引出来通过炽热的煅白,进一步预热空气。

四、结论

(一)作为硅热法炼镁的主要热工设备的回转窑和还原炉的热效率都很低,特别是还原炉,热效率极低,因而节能降耗的潜力极大。

(二)还原炉的节能是镁厂节能的关键,针对硅热还原法的特点,还原炉的节能降耗应该从研究新式的还原炉型和合理的还原罐结构、高温烟气余热的高效利用和镁渣显热的合理回收着手。

(三)根据对回转窑热诊断分析,提出了回转窑的节能对策,例如:利用烟气余热预热物料,安装简体换热器回收和减少回转窑窑体散热以及利用煅白显热预热助燃空气。

标签: 节能
打赏

免责声明:
本站部份内容系网友自发上传与转载,不代表本网赞同其观点;
如涉及内容、版权等问题,请在30日内联系,我们将在第一时间删除内容!

购物指南

支付方式

商家合作

关于我们

微信扫一扫

(c)2008-2018 DESTOON B2B SYSTEM All Rights Reserved
免责声明:以上信息由相关企业或个人自行免费发布,其真实性、准确性及合法性未证实。请谨慎采用,风险自负。本网对此不承担任何法律责任。

在线咨询

在线咨询:

QQ交流群

微信公众号