细菌选矿又叫细菌浸出,它是利用某些微生物的催化作用,使矿石中的金属溶解出来。例如有一种叫硫氧化细菌,具有使元素硫氧化的能力,在溶液中能生成硫酸。又一种叫铁氧化细菌,它具有把FeSO4加速氧化为Fe2(SO4)3的能力,使溶液中的Fe2(SO4)3含量大大增加。而H2SO4及Fe2(SO4)3溶液都是硫化矿及其他矿物的有效溶剂。
例如:在多金属硫化矿中一般都含有黄铁矿,在有水和氧存在的条件下,黄铁矿缓慢氧化,并生成FeSO4与H2SO4,其反应式为:
化学作用
2FeS2+702+2H2O ————→2FeSO4+2H2S04
铁氧细菌在有氧与硫酸存在的条件下,则用极快的速度把FeSO4氧化成Fe2(SO4)3,其反应式为:
1 细菌作用
2FeSO4+H2S04+——O2————→Fe2(SO4)3+H2O
2
Fe2(SO4)3能把矿物中的金属溶解出来,例如对辉铜矿作用时,能生成CuSO4、FeSO4及S,其反应式为:
Cu2S+3Fe2(SO4)3—→2CuSO4+4FeSO4+S
上式反应生成的FeSO4,可由铁氧化细菌进行再氧化,生成Fe2(SO4)3从而该反应在溶液中反复循环,浸出作,用不断进行。如果溶液中有硫氧化细菌存在时,则会使反应生成的S被硫氧化细菌氧化生成H2SO4,这对矿石的浸出作用更为有效,其反应式为:
细菌作用
2S+302+2H20 ————→2H2S04
细菌浸出的优点:(1)设备简单,操作方便,(2)适应于处理贫矿、废矿、尾矿及炉渣等,(3)可以综合浸出,综合回收多种金属,(4)目前对铜、铀的细菌浸出工艺比较成熟,并且铜的浸出液可以经萃取-电积法或铁置换-浮选法回收其中的铜。
细菌浸出的主要缺点是细菌的培养比较麻烦,浸出周期比较长。
国内有不少应用细菌选矿的实例,如广东某铜矿,安徽某铜矿老采区细菌浸出,湖南某铜矿等。现简介湖南某铜矿应用细菌浸出处理含铜尾矿的情况。
湖南某铜矿地表堆存着大量浮选尾矿与重选尾矿,浮选尾矿含铜0.11%~0.20%;重选尾矿含铜1.25%~1.50%,并且两种尾矿都含有稀有金属。
尾矿用细菌浸出的工艺流程如下图所示。由于尾矿粒度细,所以采用浸出池进行浸出。先加入酸,酸化水与矿石中的碱性脉石,待pH值达到2.0左右时,加入含菌高铁(Fe3+)的浸出液进行循环浸出,直至浸液的铜、稀有金属浓度很低为止。然后追加铜、稀有金属很低的细菌浸液,当浸出液浓度更低时,再水洗2~3天则可排料。[next]
浸出池编号 | 投料量(吨) | 硫酸耗量(公斤/吨) | 温度(℃) | 浸出周期 | 铜(%) | 稀有金属浸出率(%) | ||
原矿 | 浸渣 | 浸出率 | ||||||
123 | 100100100 | 343230 | 25~3525~3525~35 | 271828 | 0.811.251.51 | 0.170.480.44 | 79.0261.6070.86 | 86.451.8580.37 |
尾矿浸出时间为20天,浸出结果如上表所列。
浸出液中的稀有金属经过吸附之后,尾液含铜约1.5~2.0克/升,采用铁置换法使铜沉淀为海绵铜,其化学反应式为:
Fe+CuSO4—→FeSO4+Cu↓
(1)置换液含铜愈高愈好,含铁应尽可能少,pH=1.8%~2.0;
(2)当溶液pH值在1.5左右,铜浓度在2~4克/升时,耗铁比为铜的2.0~2.5倍;当pH值在2左右时,铜浓度较高时,耗铁比为铜的1.5倍;
(3)铁置换时间,这与温度、废铁质量和数量、溶液酸度及置换方式等因素有关。一般在温度大于20`C,通气情况下,六小时可以置换完毕;
(4)置换后立即排放尾液,调节尾液中的Fe2+浓度和酸度,并返回细菌培养液使用。
主要技术经济指标:
(1)铜的总回收率70%~75%;稀有金属的总回收率75~80%;
(2)海绵铜品位60%~650%;
(3)每吨矿耗硫酸40%~45公斤;每吨铜耗铁为2.5吨;
(4)折算纯金属铜每吨成本2000元。