式中,V为离子漂移速度;U为离子迁移率;F为作用于离子的外力,它由电场作用力和导电电子散射作用于离子的力组成。这些作用力和离子有效电荷数有关。依母体离子和杂质离子的电荷数不同和扩散、漂移速度不同而达到分离目的。如图4。
电迁移和区域熔炼方法结合使用效果更好(如图5),以镓为例,经过上述方法提纯后,镓的残余电阻率达到R残余=100000。这种方法已广泛用于铍、钨、钇、镧、铈等金属的提纯。
[next]
5.电磁场提纯
在电磁场作用下深度提纯高熔点金属的技术越来越多地被采用。电磁场不限于对熔融金属的搅拌作用,更主要的是电磁场下可使熔融金属在结晶过程中获得结构缺陷的均匀分布,并细化晶粒结构。在半导体材料拉制单晶时,在定向结晶时熔体中存在温度波动,这种温度波动会导致杂质的层状分布,而一个很小的恒定磁场就足以消除这种温度波动。在多相系统结晶时,利用电磁场可使第二相定向析出,生成类似磁性复合材料的各向异性的组织结构。电磁场还用于悬浮熔炼,这时电磁场起能源支撑作用和搅拌作用,利用杂质的蒸发和漂走第二相(氧化物、碳化物等)来纯化金属。由于不存在和容器接触对提纯金属造成的污染问题,被普遍用于几乎所有高熔点金属的提纯,如钨、钼、钽、铌、钒、铼、锇、钌、锆等。
6.提纯方法的综合应用
各个提纯方法都是利用金属的某个物理性质或化学性质和杂质元素间的差异而进行分离达到提纯目的的,如真空蒸馏是利用金属和杂质的饱和蒸气压和挥发速度的差异。区域熔炼是利用杂质在固相和液相间的溶解度差异而进行提纯分离的,因而各个方法都有一定的长处(对某些杂质分离效果好)和短处(对另一些杂质分离效果差)。即使是同一个提纯方法,也因金属性质的不同,提纯效果差别很大,如区域熔炼对高熔点金属的提纯效果好,但对某些稀土金属的提纯效果则不理想。欲获深度提纯金属的效果,一般需要综合应用多种提纯手段。在这方面,各个方法的合理结合应用和先后顺序使用十分重要,通常是将电子束熔炼或蒸馏和区域熔炼或电迁移法相结合,即先进行电子束熔炼或蒸馏提纯,再以区域熔炼或电迁移提纯作为终极提纯手段,以铍为例,为获超高纯铍,最好先多次蒸馏提纯,再真空熔炼,最后进行区域熔炼或电迁移提纯,经这样提纯后所得铍单晶纯度达99.999%,残余电阻率R残>1000。在制取超纯锗时,一般先用化学法除去磷、砷、铝、硅、硼等杂质,再用区熔法提纯得到电子级纯锗;最后多次拉晶和切割才能达到13N的纯度要求。表2为各种方法结合使用提纯金属铼的效果。
表2 各种提纯方法提纯金属铼的效果 | |
提纯方法 | 剩余电阻率RRR值 |
铼粉末真空熔炼 | 1000 |
铼粉末真空熔炼+区域熔炼 | 6000 |
粉末在H2和O2气中退火+真空熔炼+区域熔炼 | 8000 |
氢还原提纯+真空熔炼 | 15000 |
氢还原提纯+真空熔炼+区域熔炼 | 30000 |
氢还原提纯+真空熔炼+电迁移区熔 | 50000 |
7.宇宙空间条件下提纯金属
宇宙空间的开发为提纯金属制造了新的机会。宇宙空间的超高真空(约10-10Pa),超低温和基本上的无重力(g=10-5g0),为金属提纯提供了优越条件。在这种条件下,液态金属中将不会有对流的问题,结晶时杂质的分布将只具有纯扩散性质,熔化金属毋需坩埚,超高真空尤其有利于杂质的挥发和脱气。这些对于采用熔炼、蒸发、区域熔炼等方法提纯化学活性大的金属和半导体材料来说更是非常理想的条件。以提纯锗为例,在地球上锗垂熔时杂质镓的分离系数为0.1/0.15,而在宇宙空间时则达0.23/0.17。在无重力条件拉制的晶体的完整性较在重力条件下的完整性好很多。以锑化锢为例,其位错密度比只是在重力条件下的位错密度的1/6。由于宇宙中液态金属表面张力系数值很大,故在宇宙间用无坩埚区域熔炼法必定能制备出极高纯度和完整性的单晶来。此外,超低“宇宙”温度也具有良好的应用前景。