铁是湿法冶金中最常遇见的杂质元素。它在自然界的丰度以及它与周期表中许多元素(如第二类主族元素中的Ca和Mg及第一过渡系元素Ti,V,Cr,Mn,Co,Ni,Cu)化学性质上的相似性,使之经常发生元素取代,以致这些元素的矿物如果不是全部,至少也是大部分含有铁。作为固溶体结合在矿物中的铁含量从微量(<0.5wt%)到多量(>10wt%)不等,闪锌矿中取代锌的铁量可多达17.4%,镍黄铁矿(Fe,Ni)9S8含铁最多甚至可达43%。因此,湿法冶金中各种浸出液和工艺溶液中都程度不同地含有铁。下表列出了几种主要金属生产过程中由酸浸或酸洗作业产生的可溶性铁的估算数量。因此,含铁溶液的水解自然成了湿法冶金中沉淀分离铁最重要最常见的反应,而且多数是为了从浸出液和各种工艺溶液中,主要是从硫酸盐介质中,除去铁杂质。用沉淀法除铁的一个额外的好处是可以通过与铁的共沉淀同时除去其他有害元素如砷。
表 某些冶金业中产生的可溶性铁估算量
金属生产业 | 金属产量∕(t·a-1) | 产生的可溶性铁∕(t·a-1) |
铜 | 10000000 | 3000000 |
锌 | 6000000 | 1000000 |
镍 | 500000 | 2500000 |
钢 | 700000000 | 2000000 |
在湿法冶金所遇到的氧化电位和pH条件下,溶液中的铁只有二价和三价两种价态。由图1看,Fe3+与Zn2+,Cu2+,Co2+,Ni2+等的沉淀线相距甚远,表明可以通过水解选择性沉淀铁化合物,在3.5~5的低pH值下从这些金属的溶液中除去铁。Fe2+则即使在中性条件下也不发生沉淀,因此湿法冶金中的沉淀除铁问题都是基于Fe3+的水解,Fe2+需先氧化成Fe3+后才能有效除去。
铁的水解是一个十分复杂的过程,溶液的性质和水解的条件都对水解的结果有着重要影响,产生不同的水解产品和不同的晶型结构。也正因为如此,自然界才会有多种铁的氧化物存在。现在已经知道的铁氧化物、羟基氧化物和氢氧化物有13种,包括水铁矿(Fe5HO8·4H2O)、赤铁矿(α-Fe2O3)、赤磁铁矿(γ-Fe2O3)、磁铁矿(Fe3O4)、针铁矿(α-FeOOH)、四方纤铁矿(β-FeOOH)、纤铁矿(γ-FeOOH)和六方纤铁矿(δ'-FeOOH)。除针铁矿和六方纤铁矿外,其余铁氧化矿物都可能为良好的晶体。图2描述了常见铁氧化物的形成条件和它们间转变的路线和大致的转变条件。
图1 金属氢氧化物沉淀图25℃
图2 常见铁氧化物形成和转换路线及其条件
除氧化物、羟基氧化物和氢氧化物外,铁水解时还可能结合溶液中某些阴离子而形成复盐,最典型的例子是黄铁矾。其中的一些水解产物可能发展为湿法冶金中从溶液中除铁的化合物。选择作为除铁的水解产物应具备下列性质:
(1)应具有较小的溶解度,从而可把溶液中残留的铁降到最低;
(2)应能在较低的pH值下沉淀析出,以免在除铁时引起主金属沉淀损失;
(3)应易于结晶,晶粒较大尤好,便于过滤洗涤;
(4)应有较大水解速度,使除铁过程能在短时间内完成;
(5)最好能与溶液中的其他有害杂质发生共沉淀作用,简化溶液净化过程;
(6)水解沉淀过程应尽可能经济、简便。
现已开发并工业应用的沉铁方法有4种,都是利用中和水解方法沉淀的。其中3种用于除铁,都是从锌的湿法冶金工业发展起来并首先工业化的,依其沉淀的铁化合物分别称为黄铁矾法、针铁矿法和赤铁矿法。第4种主要用于磁铁合成。下面分别介绍3种水解除铁的方法。
氧化还原电位和pH值是控制铁在水溶液中行为的两个重要因素。氧化环境有利铁沉淀,还原环境促使铁溶解;酸性条件有利铁溶解,碱性条件有利铁沉淀。高铁离子平衡浓度受溶液pH值变化的影响很强烈,在pH<3时,pH值每增加1个单位,高铁离子的平衡浓度就降低2~3个数量级。因此简单地提高高铁溶液的pH值进行水解会产生巨大的过饱和度,引起很大的成核速度而造成胶体析出。溶液中的铁大于5kg∕m3时,中和水解产生的胶状Fe(OH)3沉淀就难于甚至无法过滤或沉降。这样的沉淀夹带大量溶液,造成有价组分的严重损失,无法在工业生产中用来除铁。
温度对铁的行为也有重要影响。高温会促使铁沉淀,使沉淀在更低的pH值下发生。因此,控制溶液中Fe3+沉淀程度和沉淀物稳定性的最重要的因素是温度和pH值。诱发水解反应相应地有两种主要方法:加热溶液或加碱中和。巴布坎在20~200℃范围内用0.5mol∕L Fe2(SO4)3-KOH水解合成黄钾铁矾阐明了其形成的温度-pH关系,如图3所示。图中斜线阴影部分为黄钾铁矾的稳定区,随着温度的升高,稳定区向pH值降低的方向倾斜。在20℃下黄钾铁矾形成的pH值范围从2延伸到3,而在100℃下pH值范围从1延伸到2.3,200℃下pH值从0到1.2。低于此稳定区的pH值时无沉淀生成,pH值高过此区则因温度的不同而形成各种其他铁化合物。特别值得注意的是,在100℃以上会形成赤铁矿,而在较低温度下形成针铁矿。看来pH在1.5~1.6之间是100℃下黄钾铁矾形成的理想酸度。黄钾铁矾沉淀的程度随溶液初始pH值的上升而提高,初始pH值再高则会形成别种铁化合物。
图3 黄钾铁矾形成的稳定区与温度与pH值的关系
(20~200℃下从0.5mol∕LFe2(SO4)3溶液中沉淀)
高铁浓度液对铁的沉淀也有重要影响。测定Fe2O3-H2SO4-H2O三元件系的等温线表明,在110℃下,硫酸铁酸性溶液中,在最低的铁和酸浓度下沉淀的是针铁矿α-FeO(OH),中等铁浓度时出现草黄铁矾H3OFe3(SO4)2(OH)6,在黄铁矾与针铁矿之间还有另一个化合物 Fe4(SO4)(OH)10,它在较低的铁浓度下形成,可能在黄铁矾形成后期铁浓度只有几g∕L时生成,只有在很高的硫酸铁浓度下才有Fe3(SO4)(OH)生成。
关于铁水解沉淀的物理化学更深入的讨论可参考有关文献。