除少数碱金属外,大多数金属的氢氧化物都属难溶化合物。因此,在湿法冶金实践中,最常用的金属沉淀法是中和水解生成难溶氢氧化物沉淀,其典型的沉淀反应为:
(1)
相应的金属氢氧化物的溶度积为:
(2)
又从水的离解平衡知:
(3)
于是可以得到金属氢氧化物的如下关系:
(4)
式中Ksp-金属氢氧化物的溶度积;
Kw-水的离子积。
由上式可知,在一定温度下,金属氢氧化物沉淀形成的pH值由该金属离子的价态及其氢氧化物的溶度积决定。若规定 =1mol∕L时为开始沉淀, =10-5mol∕L时为沉淀完全,则由上式可求出相应于金属氢氧化物开始沉淀和沉淀完全的pH值。
一些常见金属氢氧化物的溶度积及沉淀的pH值列在下表中。
表 常见金属氢氧化物25℃下的溶度积及沉淀的pH值
金属氢氧化物 | 溶度积Ksp | lgKsp | 完全沉淀的最低pH值 |
Ag(OH) | -7.71 | ||
Al(OH)3 | -33.50 | 4.90 | |
Be(OH)2 | -21.30 | ||
Ca(OH)2 | -5.19 | ||
Cd(OH)2 | -14.35 | 9.40 | |
Co(OH)2 | -14.90 | 8.70 | |
Co(OH)3 | -44.50 | 1.60 | |
Cr(OH)3 | -29.80 | 5.60 | |
Cu(OH)2 | -19.32 | 7.40 | |
Fe(OH)2 | -15.10 | ||
Fe(OH)3 | -38.80 | 3.20 | |
Mg(OH)2 | -11.15 | 11.00 | |
Mn(OH)2 | -12.80 | 10.10 | |
Ni(OH)2 | -15.20 | 7.45 | |
Ti(OH)4 | -53.0 | <0 | |
Zn(OH)2 | -16.46 | 8.10 |
对一种具体的金属离子,都存在一种水解沉淀平衡:
(5)
由此水解平衡可得到溶液中剩余金属离子活度与溶液pH值的下述关系:
(6)
上式表明金属氢氧化物的溶解特征是pH的函数。式中的K是水解反应式(5)的平衡常数。比较式(6)与式(4)可知lgK=lgKsp-nlgKw。
函数关系(6)可绘成沉淀图。莫讷缪斯以溶液pH值为横坐标,溶液中金属离子活度的对数为纵坐标,得到如图1的曲线。图中每条线对应一种水解沉淀平衡,线的斜率的负数为被沉淀金属离子的价数。由图可以很直观地判断金属的溶解行为,线的左面区域为金属离子留在溶液中的条件,线的右面区域为金属离子沉淀为氢氧化物的条件。图中很明显地表示了各种金属离子的相对水解沉淀性能,即从左到右金属水解沉淀的趋势减弱。一般而言,三价和四价金属离子可在较强酸条件下水解沉淀,二价过渡金属离子则在弱酸至弱碱的条件下水解。从图中还可看出,同一金属的不同价态离子的溶解行为也不同,最典型的情况如Fe2+与Fe3+及Co2+与Co3+水解沉淀条件的差别。
图1 金属氢氧化物沉淀图25℃
强碱如氢氧化钠一般不宜作金属氢氧化物的沉淀剂,即便用很稀的碱液也很难控制pH值,而且生成的氢氧化物沉淀也常呈胶态且体积庞大,难以过滤洗涤,又很容易吸附其他金属离子,不仅造成金属的损失,沉淀物也严重不纯。因此,强碱,包括石灰,主要是用于从很稀的溶液中回收少量金属或从废液中“扫除”金属。
控制溶液pH值可使用适当的缓冲剂,但这通常只适用于化学分析中的分离,对于湿法冶金需考虑成本。湿法冶金中常使用溶液主金属的氧化物、氢氧化物或碳酸盐来控制溶液pH值沉淀杂质金属的氢氧化物。
在金属氢氧化物沉淀中也可能生成金属的碱式盐,而这种趋势的大小在程大程度上取决于溶液中的阴离子。在湿法冶金过程常见的阴离子中,硫酸根最容易引起碱式盐生成,而且金属碱式硫酸盐形成的pH值还略低于对应的金属氢氧化物形成的pH值,锌湿法冶金中的黄铁矾除铁就是一个代表性的例子。