一、前言
生物浸出低品位复杂矿中的有价金属元素是目前矿冶领域的重要研究方向。生物浸出低品位镍铜硫化矿的工艺研究文献报道较少。Miller等曾对南非低品位镍矿进行了细菌堆浸模拟实验,在浸出70d后镍的浸出率在30%~50%。Southwood等研究了影响低品位镍矿生物堆浸的一些重要参数,表明矿石的理化性质、浸堆的渗透度和孔隙度是影响浸出速度和浸出率的主要因素,大量脉石的存在阻碍了镍的浸出。前人的工作表明,采用生物堆浸方式处理低品位镍铜矿,浸出速度慢,浸出率低。为了进一步提高浸出效率,有必要实验其它浸出方式处理低品位复杂镍铜矿的效果。
本文论述了3种不同方式生物浸出低品位镍铜硫化矿的实验结果。不同生物浸出方式的实验研究,以已完成的浸出条件研究结果为基础,包括:采用氧化亚铁硫杆菌(TF5)浸出硫化矿,pH值应严格控制在1.2~2.0;细菌的初始接种量应保持在108~109个∕g(细胞∕原矿);合适的矿浆浓度由矿物的硫化物含量确定;加入适量氧化硫硫杆菌(TT)有利于浸矿的进行,以TF5∶TT=2∶1的比例进行接种为最佳;在温度为35℃的情况下镍和铜的浸出率最高。实验的浸出方式包括通气搅拌浸出、通气气搅浸出及柱式渗滤浸出。
二、实验
实验采用的矿样取自金川二矿区底部贫矿,主要矿物成份为镍磁黄铁矿、镍黄铁矿、黄铜矿。矿石含镍0.68%、铜0.34%、钴0.022%。实验矿样分为两种粒度:-300目占97%和-300目占54%。细菌来自中科院微生物所提供的氧化亚铁硫杆菌和氧化硫硫杆菌,经进一步驯化培育后使用。
氧化亚铁硫杆菌采用Leathen培养基,氧化硫硫杆菌用Starky培养基,温度35℃,摇床转速140r∕min下培养。并用原矿培养混合菌,混合菌由氧化亚铁硫杆菌和氧化硫硫杆菌组成,其比例为2∶1。
用原子吸收分析法分析溶液中的镍、铜和钴,并计算浸出率。
三、结果与讨论
(一)通气气搅浸出
以矿浆浓度为5%,15%,25%进行浸出,浸出温度为室温(30℃左右)。实验过程为:当矿浆浓度为5%时,在简单气升式反应器(外管直径3.5cm,中心管直径2.5cm,其中心直管单气泡通入空气)中加入270mlLeathen培养基,15g原矿(粒度为-300目占97%)然后加酸进行预浸。待pH稳定在2。0左右,进行接种,接种量为30ml适应混合菌,最后通入空气进行浸出,通气速率约为60L∕h,每隔2d取样分析结果。当矿浆浓度为15%和25%时,实验步骤相同,只是由于固体浓度不同,接种量有所不同,固体与细菌接种量之比为每5g矿接种10ml菌液。3种不同矿浆浓度的镍铜浸出结果如图1所示,渣相分析见表1。实验结果表明,当矿浆浓度为15%时,浸出情况最好,镍浸出率达95%以上,钴浸出率达82%以上。浸出过程中,细菌生长的停滞期与矿浆浓度密切相关,矿浆浓度为5%时最短。
图1 通气气搅生物浸出镍和铜
表1 气搅浸出结果
通气气搅浸出时,矿石颗粒借助气流的提升悬浮于浸出液中,因而在浸出液中不均匀分布。细菌在矿浆中的分布与细菌周围的营养物、氧气和二氧化碳的分布有关。矿浆浓度高的部分,必须补充高浓度的营养物、氧气和二氧化碳,细菌才能充分生长。所以通气气搅实验明显存在弊端,矿石分布的不均匀,导致浸出液中各部分生长环境不同,使细菌生长环境受到制约,进而直接影响到金属元素的浸出速度和浸出率。且浸出低品位镍矿时,由于硫化物含量较低,矿浆浓度必须比较高才更有利于细菌的生长,但通气气搅方式不适合高矿浆浓度的浸出,因而采用该方式浸出低品位镍矿时,需要在高效反应器中进行,这部分工作正在研究中。
(二)通气搅拌浸出
通气搅拌浸出的特点是,在电磁搅拌下通入空气浸出。搅拌浸出反应器置于恒温水浴中,温度控制在35℃,搅拌速度为300r∕min,空气通入速率约40L∕h。
1、不同矿浆浓度的通气搅拌浸出
实验在矿浆浓度为15%,25%,30%条件下进行。15%矿浆浓度下浸出实验过程为:在恒温水浴浸出槽中加入140mlLeathen培养基,然后放入30g原矿(-300目占97%),加酸进行预浸,pH稳定在2.0之后,接种60ml适应混合菌,然后进行通气搅拌浸出。25%和30%矿浆浓度下的浸出实验过程相同,接种的细菌固体比为每5g矿接种10ml菌液。每隔两天进行取样,分析结果如图2所示。浸渣分析结果见表2。
图2 通气搅拌浸出不同矿浆浓度下的镍和铜
表2 不同矿浆浓度下通气搅拌浸出结果
实验表明,25%矿浆浓度时浸出结果最佳。原因在于15%矿浆浓度时,单位体积中硫化物量较少,不能为细菌生长提供足够的能量。在显微镜下观察,25%矿浆浓度时细菌数量明显多于15%矿浆浓度时。而30%的矿浆浓度过高,产生的较强剪切力有碍细菌生长,使浸出率下降。
2、不同粒度的通气搅拌浸出
实验在25%的矿浆浓度下进行,原矿分为两种粒度,分别为-300目占54%及-300目占97%。实验过程为:在恒温水浴浸出槽中加入100mlLeathen培养基及50g原矿,进行酸预浸。pH值稳定在2.0之后,接入100ml菌液。两个实验操作步骤相同,并不断补充培养基使溶液体积固定在200ml。每隔两天取样进行分析,实验结果示于图3,表3为浸出结果。
图3通气搅拌浸出不同粒度的镍和铜
表3 不同粒度下通气搅拌浸出结果
实验结果表明,矿物的粒度越小越有利于浸出。在浸出过程中,粒度较细时,耗酸量明显增加。
通气搅拌浸出与通气气搅浸出相比有明显的优点。采用机械搅拌,使矿石在浸出液中的分布较均匀,可采用较高矿浆浓度,对细菌的生长较有利。另一方面,在矿浆浓度较高情况下,通气加上机械搅拌,产生较强剪切力,不利于细菌浸出。因而采用这种方式浸出时,浸出率不及气搅浸出。然而,搅拌速度和矿浆浓度的合适配合,可能提高通气搅拌浸出的浸出率,比较适合浸出低品位镍铜矿。但该方式生产成本较高,由于低品位镍铜矿的脉石含量高,有价金属含量低,只有缩短生产周期,才有比较好的经济效益。为此,需要解决高效菌种,缩短生长停滞期,研制分布均匀、又不产生过高剪切力的高效反应器。
(三)柱式渗滤浸出
低品位镍铜矿采用搅拌浸出将明显增加处理成本,为提高经济效益,考虑成本相对低廉的生物堆浸。实验室中常采用柱式渗滤浸出模拟堆浸。本实验,采用柱式玻璃反应器(直径2。5cm),矿粒度控制在-20目~+40目,矿量总重为100g,浸出液(pH=2)柱高约20cm,总体积为4000ml,浸出液流速约25cm∕h,渗滤柱矿样表面无溶液,温度约25℃进行循环浸出。首先进行酸预浸,待pH稳定在2.0之后,接入400ml菌液。浸出过程中,液体蒸发部分用Leathen培养基补充。每隔7d进行取样分析,实验结果如图4所示,表4为浸出结果。
图4 柱式渗滤浸出镍和铜
表4 柱式渗滤浸出结果
在浸出28d后,加入银离子作为催化剂以提高铜的浸出率,加入量为1.2mg∕g(催化剂∕原矿)。由实验结果可以看到,柱浸渗滤浸出实验的浸出速度很慢。在浸出过程中,溶液的Eh值一直处于较低水平,在0.62mV(SCE)左右。由于浸出过程缓慢,pH值常上升,要经常加酸补充,调节pH值,浸出期间的总耗酸量为0.002mol∕g。
渗滤浸出是生产成本最低的浸出方式,但由于矿石粒度较细,且一直处于静止状态,浸出周期很长,浸出率也低于前二种方式。然而,从经济效益考虑,渗滤浸出最具应用于工业生产的前景。
四、结论
采用3种不同方式进行了金川低品位镍铜硫化矿的生物浸出实验,得到如下结论:
(一)通气气搅浸出结果最好,在15%矿浆浓度下浸出20d后,镍浸出率达953.4%,铜为48.6%,钴为82.6%。
(二)通气搅拌浸出可在高矿浆浓度下进行,且浸出周期最短,在25%矿浆浓度下浸出14d后,镍浸出率为80.2%,铜为45.2%,钴为78.4%。
(三)柱式渗滤浸出周期长,浸出率低,浸出49d后,镍浸出率为48.5%,铜为37.5%,钴为33.6%。