图1所示为范得华尔特设计的此类粘度计的示意图。这是专门为测定重悬浮液粘度而设计的粘度计,在内筒的下方装设有带顶盖的搅拌用叶轮(转动方向与内筒相反),以防止悬浮液在测定过程中分层;在内筒的四周,则环形地排列着若干辐射状的隔板,以防止产生旋涡,保证悬浮液只能垂直于圆筒旋转方向回流。外筒四周还带有水套,以保持测定期间悬浮液温度的恒定。这种粘度计曾在国外选矿研究部门得到广泛应用。
图1 范氏转筒粘度计
1—内筒;2—外筒;3—叶轮;4—隔板;5—水套;6—齿轮;7—转速表;8—滑轮;9—重物
③轴流式同心圆筒粘度计(下图2)这是密西根工业大学矿业研究所作为专科提出的一种新粘度计,其特点是利用装设在粘度计外部的泵循环矿浆,使矿浆沿轴向流经两个圆筒间的环形空间,对悬挂在金属丝上的圆筒施加拖力(剪应力)。矿物悬浮液的流速是由泵的转速控制的,故根据泵的转速和拖力的对应关系,即可测出悬浮液的流变特性。该专利设计还采用了自动记录装置———拖力和转速均转换成讯号同时输入记录器,它既可用作连续测量用的自动化仪表,也可用于分批操作的小型试验。
图2 轴流式同心圆筒粘度计
1— 转换器;2—粘度计;3—同心圆筒;4—放气栓;5—温度计;
6—漏斗;7—排浆旋塞;8—介质循环泵;9—变速马达;
10—双路记录器;11—带恒温水套的介质循环管;12、13—讯号输出[next]
A以上各种同心筒式粘度计,均可在较广阔的流速梯度范围内使用,但当流速梯度很小时,第二类粘度计的误差较大,因为此时所需的拖动重量太小,易受仪器传动部分摩擦方的影响而造成误差,此时宁愿采用带有扭秤的第一类粘度计。第三类粘度计流速梯度的下限则取决于保证悬浮液中固体不致沉淀所需的最低循环速度。
各种同心筒式粘度计,当试验液体处于层流状态时,均可直接根据试验数据利用已知公式算出粘度和极限剪应力的数值,有关的仪器常数,则可利用已知粘度的液体予以预先标定。但选矿实践中碰到的大都是属于由层流到紊流的过渡范围此时仪器的标定和测量数据处理工作都比较繁杂,实际使用时需参考仪器说明书或有关著作。
(3)比较和应用 由上述可知,同心圆筒粘度计可适用于不同的流态(层流、层流与紊流的过渡区、紊流),并可完整地给出说明悬浮液粘滞性的全部参数(粘度和极限剪应力),且已妥善地解决了防止悬浮液分层的问题。因而是比较理想的粘度计。缺点是仪器的标定和测量数据处理工作量较大,因而不少研究人员宁愿采用较简单的毛细管流动法。
在矿石可选性研究、包括现厂试验工作中,为了迅速地获得介质组成(比重、形状、浓度、细度以及稳定剂和分散剂的用量等)对流变性质影响的数据,可以采用下列简便办法。
①在不需要分别测定塑性粘度和极限剪应力、并且流速梯度不十分大的情况下,可利用简单的毛细管粘度计(也可用同心筒粘度计)测定其表观粘度,作为选择和调节介质组成的判据。
②在需要完整地了解不同流速梯度下有关介质粘滞性全部参数的情况下,可直接利用由同心筒粘度计测得的原始数据作图。因为剪切力=f(转速)曲线的变化趋势与剪应力=f(流速梯度)曲线应该是相似的,通过比较不同介质剪切力=f(转速)曲线的斜率和其在剪切力轴上的截距,即可间接地看出不同介质组成对悬浮液塑性粘度和极限剪应力的影响。
图3所示,即为阿普兰和斯派登在研究重介质粘度调节方法时,利用由范德华尔特型转筒粘度计测得原始数据(拖动内筒旋转用的重物的重量和内筒的转速)作出的,反映六聚偏磷酸钠对球形硅铁悬浮液流变性影响的曲线,所用球形硅铁的粒度为-0.15mm,添加了1%,的膨润土,悬浮液比重为3.6。图中标出的数据,则为相应点的表观粘度。
图3 球形硅铁悬浮液应变-应力曲线
六偏磷酸钢用量(%);1—0;2—0.001;3—0.017[next]
由图注表观粘度数据可知,在应用膨润土做稳定剂的硅铁悬浮液中,添加六聚偏磷酸钠可以降低悬浮液的表观粘度,也说明在流速梯度或剪应力相同的条件下,表现粘度可以用作比较悬浮液流变性质的判据;再从应变%应力曲线看出,六聚偏磷酸钠的作用主要是降低悬浮液的极限剪应力而不是塑性粘度;并可看出,悬浮液中六聚偏磷酸钠的浓度达到0.001%时即可使悬浮液的粘度大为降低,再增高浓度变化即不大;还可看出。在流速梯度很高的情况下(如生产中重介质旋流器内的情况),添加分散剂的必要性即不大(因此时膨润土对悬浮液粘度影响不大,不需要用分散剂分散)。以上这些则表明,应变--应力曲线可以为我们提供更多的情报。
由上例还可看出,在生产上研究悬浮液粘滞性对选矿效率的影响时,必须综合考虑极限剪应力和塑性粘度两项参数,有人曾为此提出用稠度(Consistency)的概念来概括这两项性质,并将可以同时测定这两项参数的仪器称为“稠度计”。在一定条件下表观粘度μa可以反映稠度的概念,因为
τ o
μa =μpl + dυ
dy
但他不是常量,而是流速梯度的函数。
3.悬浮液稳定性的测定
在不同高度的层位上,保持其比重恒定的性质,称为悬浮液的稳定性,因而通常可用单位时间内比重变化的幅度作为度量稳定性的数量指标。由于不同层位上比重的变化是悬浮液中固体颗粒的沉降所引起,因而也可用沉降速度作为度量悬浮液稳定性的指标。
测定悬浮液稳定性的方法有下列几种:
(1)直接测定悬浮液的沉降速度 此法的实质是,直接用悬浮液沉降速度度量其稳定性,测定方法参看有关资料。
(2)测定悬浮液中浮子的沉降速度将比重与悬浮液相同的浮子,置悬浮液中。随着悬浮液比重的变化,浮子将逐渐下沉,测定浮子的下沉速度,就可判断悬浮液的稳定性。测定需要一套不同比重的浮子,浮子比重可用添加或减少铅砂等的方法进行调节。
(3)测定单位时间内悬浮液比重变化的百分率 过去常用的为基尔型装置,仪器的主体部分为一直径1.9cm高25cm的测管,距顶端1/3高处有一泄流孔。测量时先将泄流孔塞上,向管内注入悬浮液并称重,将管摇动使管内悬浮液混匀,然后让悬浮液沉降1min,将泄流孔打开,将上部的悬浮液放出,再将测管和剩余的悬浮液称重,根据沉降前后悬浮液的重量和体积,以及测管的净重,即可算出1min内悬浮液比重变化的百分率。
最近报导了一个新的供实验室分批试验用的自动记录沉降仪,其工作原理如图4所示。基本部件仍为一沉降管,底部与压力传感管相连。为了防止沉下的固体进入管内,中间用一玻璃砂滤器隔开,玻璃砂滤器的选择,应能将固体颗粒阻留而不致影响静水压强的传递。悬浮液的静水压由一压力转换器转换为讯号输出,送至记录器随时记录———自动记下比重随时间的变化关系,故可避免人为的测量误差。沉降试验结果用每秒钟比重变化百分率表示。例如,某比重为1.5的悬浮液,若其沉积速率为2%,指每秒钟比重降低[next]
2
(1.5-1.0)× —— =0.01
100
即沉积1min后,比重将由1.5降至1.49。从1.5降至1.0(代表完全沉淀),则共需50min。
悬浮液的稳定性若能达到每秒0.2%,即可满意地用于工业生产。
图4 沉降仪
1— 沉降管;2--玻璃砂滤器;3—转换器;4—记录器;5—旋塞