(二)重液和重悬浮液物理性质的测定
重介质选矿时,为了获得满意的分离效果,要求调节和控制选别介质的下列物理性质:(1)比重及其稳定性;(2)粘度。
1.介质比重的测定
选矿工艺上测定重液和重悬浮液比重的方法通常有下列四类:(1)比重瓶法;(2)浮子法;(3)压差法;(4)放射性同位素法。
(1) 比重瓶法 比重瓶法的实质是,测定一定体积介质的重量。重液所用比重瓶与测定固体粉末比重用的比重瓶相同,悬浮液则需使用一较大容器。设空瓶重G1,注满水后瓶与水总重为G2,注满待测重介质时瓶与待测重液总重为G3,则待测重介质比重△为:
G3 - G1
△ = ————·△W
G2 - G1
式中△W为水的比重(相对密度),不同温度下水的密度可参看有关资料,要求不高时可一律地取△W=1。
按比重瓶原理制成的工业用比重测量装置示意图如图1所示。
图1 重介质比重测定装置原理图
a— 比重瓶式;b—浮子式,c—压差计式;d—辐射计式;
AT—工作介质(重液或重悬浮液);
D—探测器;DL—压缩空气;K—补偿器;str—射线源[next]
(2)浮子式比重计和比重天平浮子式液体比重计按其原理可分为定重式和定容式两种。
目前市售的液体比重计,主要是定重式,即比重计的重量是一定的,随所测液体比重的不同,比重计沉没于液体中的体积不同,故可根据沉没部分的体积和比重计重量算出液体比重,市售的比重计上相应于不同沉没深度处已直接标出所测液体比重的数值,因而使用时可直接读数,非常方便。但是,目前市场供应的液体比重计主要是供测定牛奶、有机液体和无机酸等液体比重用的,比重范围一般不大于2,因而在矿石比重组分分析和重介质选矿试验中,往往需自制比重计。
自制比重计时,可按比重式原理,也可按定容式原理设计。亦可用若干小安瓿瓶或普通短玻璃管注入不同重量的铅砂后封口,制成一套具有不同比重的浮子作比重计使用,各个浮子的实际比重可用测矿块比重的方法预先标定。
液体比重天平是按定容式比重计原理制定的专用天平,其构造如下图所示。测定时首先将天平臂装在支架上,重锤F和平衡锤E挂在钩子A上,调节螺旋B使臂处于平衡状态(即臂的尖端C与支架上的尖端D对准),将待测重液倒在量筒里,然后让重锤F浸入重液中,此时由于重锤受到液体的浮力而上浮;使天平失去平衡,这时可在梁上追加砝码,使其恢复平衡。砝码或放在钩A上,或放在梁上不同切口处。切口处力臂较短,所代表的比重也相应较小。不同砝码在不同位置所代表的比重是预先标定好的,因而可直接读出所测液体比重的数值。须注意的是,砝码同重锤是软连接,当液体比重大于重锤比重时重锤将浮至液面,此时只有换用比重更大的锤后才能进行测定,但应使新锤的容积与老锤相同,否则所有砝码均须全部重新标定。
图2 液体比重天平
图1所示是供连续试验或工业生产用浮子式比重测量装置的示意图。
(3)压差法 通过测定液面下不同深度处的压差确定介质比重。如图1c所示,两根插至液面下不同深度的测管,下口是敞开的,压缩空气(或氮气)通过调节阀和流量计以恒定流量通入两管,使管口保持少量气泡逸出液面,两管上端接一压差计测量两管的压差△P,按△P=ρg△H的关系可直接算出介质的密度ρ。[next]
(4)辐射计法 测量原理如图1d所示。此法的优点是,它既可以测量液体的密度,也可以测量气体和固体的密度;由于它是非接触测量,因而可适用于高温、高压、高粘度和腐蚀性条件下。被测液体的容器直径可大至几米,器壁可厚至几十毫米。选矿工艺上此法主要用于测定管道中矿浆的密度。此类密度计的缺点是装备较复杂且须注意对射线的防护。
2.重液和悬浮液粘度的测定
重液属均质液体。多数均质液体的流变性服从牛顿液体内摩擦定律。按牛顿定律,相对流动的两层液体间的相互作用力:
dυ
τ = μ——
dy
式中 τ——剪应力(Pa);
dυ/dy——速度梯度(s-1);
μ——粘度(Pa·S)。
粘度在数值上等于dυ/dy为1时单位面积液体层面间的剪力。
选矿工艺中所用的悬浮液,当固体含量低时,其性质与牛顿液体近似,可以利用上式说明其流变性质;当固体含量高时,悬浮的固体颗粒将影响整个体系的粘度,并改变表示这种现象的规律,此时可用宾汉定律说明其流变特性:
dυ
τ = τ0 + μP1 ——
dy
式中 τO——极限剪应力;
μP1——塑性粘度。
因而,为了说明宾汉液体的内摩擦性质,需要知道两项参数,即粘度μP1和极限剪应力τO。由于μP1和τO的测定比较复杂,故实际工作中亦常用剪应力与速度梯度的比值来度量悬浮液的流变性,此值称为表现粘度或视粘度μa
τ
μa = dυ
dy
用于测量粘度的仪器种类较多,且尚在不断发展中。常用者按其原理可分为:(1)毛细管粘度计,根据液体流过毛细管的压力和流量测定其粘度;(2)同心圆筒仪,限据环形空间中液体的剪应力和流速梯度计算其粘度;(3)落体式粘度计,根据物体在液体中自由下落的速度与该液体的粘度成反比的关系测定粘度;(4)振动式粘度计,它主要根据声振动体或超声振动体受液体阻尼作用产生衰减的原理工作。下面仅介绍几种可用于测定重悬浮液粘度的专用粘度计。
悬浮液粘度的测定比普通均质液体困难,原因是为了防止固体的沉积在粘度计中必须装设搅拌装置,但又要避免由于搅拌而影响到测定的可靠性。[next]
(1)毛细管粘度计 最早用于测定重悬浮液粘度的仪器,是德凡尼和谢尔同设计的毛细管粘度计,该仪器由一孔径为2.64mm的毛细管和与它相连的带有搅拌装置的容器组成。液体的表观粘度(视粘度)根据每流出100ml液体所需的时间确定,而对应于不同时间的粘度数值可用已知粘度的牛顿液体予以标定。此法的主要缺点是未能给出表征悬浮液全部流变性质的参数τO和μP1,并且不同仪器的测定结果不能相互比较,但由于它能迅速而简便地给出结果,因而至今仍在实际工作中获得应用、曾对毛细管型粘度计作过许多改进,使之更适用于测定悬浮液的粘度。为了测定宾汉塑性液体的μP1和τO,可使用真空毛细管粘度计。图3所示是苏联选矿研究院使用的真空毛细管粘度计,它与普通真空毛细管式粘度计的主要差别在于,利用砂泵使矿浆循环,以防止悬浮液的沉淀和分层。
图3 真空毛细管粘度计
1— 毛细管;2—循环悬浮液的容量;3—泵的贮液槽;4—缓冲瓶;
5—粘度计贮液器;6—三通开关;7—悬浮液面标高指示刻度;8—压力计
应用真空毛细管粘度计测定悬浮液的流变性质时,需在不同真空度下测定通过毛细管的流量,并据此绘制Q=f(p)图,找出其直线部分在横坐标上的截距Pc,然后按下列二式分别计算极限剪应力和塑性粘度。
极限剪应力
3rPc
τ0 = ————(Pa)
8L
式中 r——毛细管半径(m0);
PC——Q=f(P)在横坐标上的截距(Pa);
L——毛细管长度(m)。
塑性粘度
λ(P - Pc)
μP1 = ———————
Q
[next]
式中 λ——毛细管常数,可利用已知粘度的液体标定;
Q——对应于压力P时的流量(m3/s)。
曾用此法测定方铅矿(单位体积表面积为SV=5.7*105m2/m3)悬浮液的流变性质,发现当方铅矿的容积浓度为15.6%时,τO =0,悬浮液的性质接近于牛顿液体;浓度大于15.6%时,τO>0,服从宾汉塑性液体的流变规律。
毛细管流动法测得的是层流条件下韵粘度,不能外推至速度梯度很高的场合,例如泥浆泵和重介质旋流器中的液流。
(2)同心圆筒粘度计这是研究悬浮液流变性质时应用最广的一类粘度计,其主体部分为一圆筒形容器(外筒),里面同心地放置着另一圆筒(内筒),两圆筒间的环形空间里则充满着所研究的液体,为了求得流速梯度和剪应力的对应关系,曾采用过下列三类不同的方法设计粘度计:
①外转筒式粘度计 使外筒以某一角速度旋转,造成环形空间中液层的相对运动,并依靠剪切力扭动悬挂在金属丝上的内筒,根据其扭转角度,即可算出不同转速下的旋转力矩(相应地、也就找到了流速梯度与剪应力的对应关系),图4所示,即为此类粘度计的示意图。
图4 外转筒式粘度计
1— 转速表;2—外转筒;3—吊筒;4—扭丝;
5—量角器;6—马达
②内转筒式粘度计 借助重物并通过滑轮以某一旋转力矩使内筒旋转,通过测定不同旋转力矩下内筒的转速,找出剪应力和流速梯度的对应关系。